
Lecture 1: an introduction to CUDA
Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 1 – p. 1

Overview

hardware view

software view

CUDA programming

Lecture 1 – p. 2

Hardware view

At the top-level, a PCIe graphics card with a many-core
GPU and high-speed graphics “device” memory sits inside
a standard PC/server with one or two multicore CPUs:

DDR4 GDDR5
or HBM

motherboard graphics card

Lecture 1 – p. 3

Hardware view

Currently, 4 generations of hardware cards in use:

Kepler (compute capability 3.x):
first released in 2012, including HPC cards with
excellent DP
our practicals will use K40s and K80s

Maxwell (compute capability 5.x):
first released in 2014; only gaming cards, so poor DP

Pascal (compute capability 6.x):
first released in 2016
many gaming cards and several HPC cards in Oxford

Volta (compute capability 7.x):
first released in 2018; only HPC cards so far Lecture 1 – p. 4

Hardware view

The Pascal generation has cards for both gaming/VR and
HPC

Consumer graphics cards (GeForce):

GTX 1060: 1280 cores, 6GB (£230)

GTX 1070: 1920 cores, 8GB (£380)

GTX 1080: 2560 cores, 8GB (£480)

GTX 1080 Ti: 3584 cores, 11GB (£650)

HPC (Tesla):

P100 (PCIe): 3584 cores, 12GB HBM2 (£5k)

P100 (PCIe): 3584 cores, 16GB HBM2 (£6k)

P100 (NVlink): 3584 cores, 16GB HBM2 (£8k?) Lecture 1 – p. 5

Hardware view
building block is a “streaming multiprocessor” (SM):

128 cores (64 in P100) and 64k registers
96KB (64KB in P100) of shared memory
48KB (24KB in P100) L1 cache
8-16KB (?) cache for constants
up to 2K threads per SM

different chips have different numbers of these SMs:

product SMs bandwidth memory power
GTX 1060 10 192 GB/s 6 GB 120W
GTX 1070 16 256 GB/s 8 GB 150W
GTX 1080 20 320 GB/s 8 GB 180W

GTX Titan X 28 480 GB/s 12 GB 250W
P100 56 720 GB/s 16 GB HBM2 300W

Lecture 1 – p. 6

Hardware View

Pascal GPU

SM SM SM SM

L2 cache

SM SM SM SM

shared memory

L1 cache

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 7

Hardware view

There were multiple products in the Kepler generation

Consumer graphics cards (GeForce):

GTX Titan Black: 2880 cores, 6GB

GTX Titan Z: 2×2880 cores, 2×6GB

HPC cards (Tesla):

K20: 2496 cores, 5GB

K40: 2880 cores, 12GB

K80: 2×2496 cores, 2×12GB

Lecture 1 – p. 8

Hardware view

building block is a “streaming multiprocessor” (SM):
192 cores and 64k registers
64KB of shared memory / L1 cache
8KB cache for constants
48KB texture cache for read-only arrays
up to 2K threads per SM

different chips have different numbers of these SMs:

product SMs bandwidth memory power
GTX Titan Z 2×15 2×336 GB/s 2×6 GB 375W

K40 15 288 GB/s 12 GB 245W
K80 2×14 2×240 GB/s 2×12 GB 300W

Lecture 1 – p. 9

Hardware View

Kepler GPU

SM SM SM SM

L2 cache

SM SM SM SM

L1 cache /

shared memory

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 1 – p. 10

Multithreading

Key hardware feature is that the cores in a SM are SIMT
(Single Instruction Multiple Threads) cores:

groups of 32 cores execute the same instructions
simultaneously, but with different data

similar to vector computing on CRAY supercomputers

32 threads all doing the same thing at the same time

natural for graphics processing and much scientific
computing

SIMT is also a natural choice for many-core chips to
simplify each core

Lecture 1 – p. 11

Multithreading

Lots of active threads is the key to high performance:

no “context switching”; each thread has its own
registers, which limits the number of active threads

threads on each SM execute in groups of 32 called
“warps” – execution alternates between “active” warps,
with warps becoming temporarily “inactive” when
waiting for data

Lecture 1 – p. 12

Multithreading

originally, each thread completed one operation before
the next started to avoid complexity of pipeline overlaps

✲

time1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

1 2 3 4 5✲✲ ✲

however, NVIDIA have now relaxed this, so each thread
can have multiple independent instructions overlapping

memory access from device memory has a delay of
200-400 cycles; with 40 active warps this is equivalent
to 5-10 operations, so enough to hide the latency?

Lecture 1 – p. 13

Software view

At the top level, we have a master process which runs on
the CPU and performs the following steps:

1. initialises card

2. allocates memory in host and on device

3. copies data from host to device memory

4. launches multiple instances of execution “kernel” on
device

5. copies data from device memory to host

6. repeats 3-5 as needed

7. de-allocates all memory and terminates

Lecture 1 – p. 14

Software view

At a lower level, within the GPU:

each instance of the execution kernel executes on a SM

if the number of instances exceeds the number of SMs,
then more than one will run at a time on each SM if
there are enough registers and shared memory, and the
others will wait in a queue and execute later

all threads within one instance can access local shared
memory but can’t see what the other instances are
doing (even if they are on the same SM)

there are no guarantees on the order in which the
instances execute

Lecture 1 – p. 15

CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s
program development environment:

based on C/C++ with some extensions

FORTRAN support provided by compiler from PGI
(owned by NVIDIA) and also in IBM XL compiler

lots of example code and good documentation
– fairly short learning curve for those with experience of
OpenMP and MPI programming

large user community on NVIDIA forums

Lecture 1 – p. 16

CUDA Components

Installing CUDA on a system, there are 3 components:

driver
low-level software that controls the graphics card

toolkit
nvcc CUDA compiler
Nsight IDE plugin for Eclipse or Visual Studio
profiling and debugging tools
several libraries

SDK
lots of demonstration examples
some error-checking utilities
not officially supported by NVIDIA
almost no documentation

Lecture 1 – p. 17

CUDA programming

Already explained that a CUDA program has two pieces:

host code on the CPU which interfaces to the GPU

kernel code which runs on the GPU

At the host level, there is a choice of 2 APIs
(Application Programming Interfaces):

runtime
simpler, more convenient

driver
much more verbose, more flexible (e.g. allows
run-time compilation), closer to OpenCL

We will only use the runtime API in this course, and that is
all I use in my own research.

Lecture 1 – p. 18

CUDA programming

At the host code level, there are library routines for:

memory allocation on graphics card

data transfer to/from device memory
constants
ordinary data

error-checking

timing

There is also a special syntax for launching multiple
instances of the kernel process on the GPU.

Lecture 1 – p. 19

CUDA programming

In its simplest form it looks like:

kernel_routine<<<gridDim, blockDim>>>(args);

gridDim is the number of instances of the kernel
(the “grid” size)

blockDim is the number of threads within each
instance
(the “block” size)

args is a limited number of arguments, usually mainly
pointers to arrays in graphics memory, and some
constants which get copied by value

The more general form allows gridDim and blockDim to
be 2D or 3D to simplify application programs

Lecture 1 – p. 20

CUDA programming

At the lower level, when one instance of the kernel is started
on a SM it is executed by a number of threads,
each of which knows about:

some variables passed as arguments

pointers to arrays in device memory (also arguments)

global constants in device memory

shared memory and private registers/local variables

some special variables:
gridDim size (or dimensions) of grid of blocks
blockDim size (or dimensions) of each block
blockIdx index (or 2D/3D indices) of block
threadIdx index (or 2D/3D indices) of thread
warpSize always 32 so far, but could change

Lecture 1 – p. 21

CUDA programming

1D grid with 4 blocks, each with 64 threads:

gridDim = 4

blockDim = 64

blockIdx ranges from 0 to 3

threadIdx ranges from 0 to 63

r❄
blockIdx.x=1, threadIdx.x=44

Lecture 1 – p. 22

CUDA programming

The kernel code looks fairly normal once you get used to
two things:

code is written from the point of view of a single thread
quite different to OpenMP multithreading
similar to MPI, where you use the MPI “rank” to
identify the MPI process
all local variables are private to that thread

need to think about where each variable lives (more on
this in the next lecture)

any operation involving data in the device memory
forces its transfer to/from registers in the GPU
often better to copy the value into a local register
variable

Lecture 1 – p. 23

Host code
int main(int argc, char **argv) {
float *h_x, *d_x; // h=host, d=device
int nblocks=2, nthreads=8, nsize=2*8;

h_x = (float *)malloc(nsize*sizeof(float));
cudaMalloc((void **)&d_x,nsize*sizeof(float));

my_first_kernel<<<nblocks,nthreads>>>(d_x);

cudaMemcpy(h_x,d_x,nsize*sizeof(float),
cudaMemcpyDeviceToHost);

for (int n=0; n<nsize; n++)
printf(" n, x = %d %f \n",n,h_x[n]);

cudaFree(d_x); free(h_x);
} Lecture 1 – p. 24

Kernel code
#include <helper_cuda.h>

__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = (float) threadIdx.x;
}

global identifier says it’s a kernel function

each thread sets one element of x array

within each block of threads, threadIdx.x ranges
from 0 to blockDim.x-1, so each thread has a unique
value for tid

Lecture 1 – p. 25

CUDA programming

Suppose we have 1000 blocks, and each one has 128
threads – how does it get executed?

On Kepler hardware, would probably get 8-12 blocks
running at the same time on each SM, and each block
has 4 warps =⇒ 32-48 warps running on each SM

Each clock tick, SM warp scheduler decides which warps
to execute next, choosing from those not waiting for

data coming from device memory (memory latency)

completion of earlier instructions (pipeline delay)

Programmer doesn’t have to worry about this level of detail,
just make sure there are lots of threads / warps

Lecture 1 – p. 26

CUDA programming

Queue of waiting blocks:

Multiple blocks running on each SM:

SM SM SM SM

❄ ❄ ❄ ❄

Lecture 1 – p. 27

CUDA programming

In this simple case, we had a 1D grid of blocks, and a 1D
set of threads within each block.

If we want to use a 2D set of threads, then
blockDim.x, blockDim.y give the dimensions, and
threadIdx.x, threadIdx.y give the thread indices

and to launch the kernel we would use something like

dim3 nthreads(16,4);
my_new_kernel<<<nblocks,nthreads>>>(d_x);

where dim3 is a special CUDA datatype with 3 components
.x,.y,.z each initialised to 1.

Lecture 1 – p. 28

CUDA programming

A similar approach is used for 3D threads and 2D / 3D grids;
can be very useful in 2D / 3D finite difference applications.

How do 2D / 3D threads get divided into warps?

1D thread ID defined by

threadIdx.x +
threadIdx.y * blockDim.x +
threadIdx.z * blockDim.x * blockDim.y

and this is then broken up into warps of size 32.

Lecture 1 – p. 29

Practical 1

start from code shown above (but with comments)

learn how to compile / run code within Nsight IDE
(integrated into Visual Studio for Windows,
or Eclipse for Linux)

test error-checking and printing from kernel functions

modify code to add two vectors together (including
sending them over from the host to the device)

if time permits, look at CUDA SDK examples

Lecture 1 – p. 30

Practical 1

Things to note:

memory allocation
cudaMalloc((void **)&d x, nbytes);

data copying
cudaMemcpy(h x,d x,nbytes,

cudaMemcpyDeviceToHost);

reminder: prefix h and d to distinguish between
arrays on the host and on the device is not mandatory,
just helpful labelling

kernel routine is declared by global prefix, and is
written from point of view of a single thread

Lecture 1 – p. 31

Practical 1

Second version of the code is very similar to first, but uses
an SDK header file for various safety checks – gives useful
feedback in the event of errors.

check for error return codes:
checkCudaErrors(...);

check for kernel failure messages:
getLastCudaError(...);

Lecture 1 – p. 32

Practical 1

One thing to experiment with is the use of printf within
a CUDA kernel function:

essentially the same as standard printf; minor
difference in integer return code

each thread generates its own output; use conditional
code if you want output from only one thread

output goes into an output buffer which is transferred
to the host and printed later (possibly much later?)

buffer has limited size (1MB by default), so could lose
some output if there’s too much

need to use either cudaDeviceSynchronize(); or
cudaDeviceReset(); at the end of the main code to
make sure the buffer is flushed before termination

Lecture 1 – p. 33

Practical 1

The practical also has a third version of the code which
uses “managed memory” based on Unified Memory.

In this version

there is only one array / pointer, not one for CPU and
another for GPU

the programmer is not responsible for moving the data
to/from the GPU

everything is handled automatically by the CUDA
run-time system

Lecture 1 – p. 34

Practical 1

This leads to simpler code, but it’s important to understand
what is happening because it may hurt performance:

if the CPU initialises an array x, and then a kernel uses
it, this forces a copy from CPU to GPU

if the GPU modifies x and the CPU later tries to read
from it, that triggers a copy back from GPU to CPU

Personally, I prefer to keep complete control over data
movement, so that I know what is happening and I can
maximise performance.

Lecture 1 – p. 35

ARCUS-B cluster

G G G G GG G G G G

gnode1101 gnode1102 gnode1103 gnode1104 gnode1105

arcus-b

external network

arcus-b.arc.ox.ac.uk is the head node

the GPU compute nodes have two K80 cards with a
total of 4 GPUs, numbered 0 – 3

read the Arcus notes before starting the practical Lecture 1 – p. 36

Key reading

CUDA Programming Guide, version 8.0:

Chapter 1: Introduction

Chapter 2: Programming Model

Section 5.4: performance of different GPUs

Appendix A: CUDA-enabled GPUs

Appendix B, sections B.1 – B.4: C language extensions

Appendix B, section B.17: printf output

Appendix G, section G.1: features of different GPUs

Wikipedia (clearest overview of NVIDIA products):

en.wikipedia.org/wiki/Nvidia Tesla

en.wikipedia.org/wiki/GeForce 10 series
Lecture 1 – p. 37

Nsight

General view:

Lecture 1 – p. 38

Nsight
Importing the practicals: select General – Existing Projects

Lecture 1 – p. 39

Nsight

Lecture 1 – p. 40

Lecture 2: different memory
and variable types

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 2 – p. 1

Memory

Key challenge in modern computer architecture

no point in blindingly fast computation if data can’t be
moved in and out fast enough

need lots of memory for big applications

very fast memory is also very expensive

end up being pushed towards a hierarchical design

Lecture 2 – p. 2

CPU Memory Hierarchy

❄
faster

more expensive
smaller

32 – 128 GB
2GHz DDR4Main memory

12 – 24 MB
2GHz SRAML3 Cache

L1/L2 Cache
32KB + 512KB
3GHz SRAM

registers

200+ cycle access, 60 – 120GB/s

25-35 cycle access, 200 – 400GB/s

5-12 cycle access

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻

Lecture 2 – p. 3

Memory Hierarchy

Execution speed relies on exploiting data locality

temporal locality: a data item just accessed is likely to
be used again in the near future, so keep it in the cache

spatial locality: neighbouring data is also likely to be
used soon, so load them into the cache at the same
time using a ‘wide’ bus (like a multi-lane motorway)

This wide bus is only way to get high bandwidth to slow
main memory

Lecture 2 – p. 4

Caches

The cache line is the basic unit of data transfer;
typical size is 64 bytes ≡ 8× 8-byte items.

With a single cache, when the CPU loads data into a
register:

it looks for line in cache

if there (hit), it gets data

if not (miss), it gets entire line from main memory,
displacing an existing line in cache (usually least
recently used)

When the CPU stores data from a register:

same procedure
Lecture 2 – p. 5

Importance of Locality

Typical workstation:
20 Gflops per core
40 GB/s L3←→ L2 cache bandwidth
64 bytes/line

40GB/s ≡ 600M line/s ≡ 5G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 200 Mflops

If all 8 variables/line are used, then this increases to 1.6
Gflops.

To get up to 20Gflops needs temporal locality, re-using data
already in the L2 cache.

Lecture 2 – p. 6

Pascal

Pascal GPU

SM SM SM SM

L2 cache

SM SM SM SM

shared memory

L1 cache

✟✟✟✟✟✟✟

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✏✏✏✏✏

❅
❅
❅
❅
❅

Lecture 2 – p. 7

Pascal

usually 32 bytes cache line (8 floats or 4 doubles)

P100: 4092-bit memory path from HBM2 device
memory to L2 cache =⇒ up to 720 GB/s bandwidth

GeForce cards: 384-bit memory bus from GDDR5
device memory to L2 cache =⇒ up to 320 GB/s

unified 4MB L2 cache for all SM’s

each SM has 64-96kB of shared memory, and
24-48kB of L1 cache

no global cache coherency as in CPUs, so should
(almost) never have different blocks updating the same
global array elements

Lecture 2 – p. 8

GPU Memory Hierarchy

❄
faster

more expensive
smaller

4 – 12 GB
5GHz GDDR5Device memory

2 – 4MB
L2 Cache

L1 Cache
16/32/48KB

registers

200-300 cycle access, 250 – 500GB/s

200-300 cycle access, 500 – 1000GB/s

80 cycle access

❄

✻

❄❄
✻✻

❄❄❄
✻✻✻

Lecture 2 – p. 9

Importance of Locality

5Tflops GPU
320 GB/s memory←→ L2 cache bandwidth
32 bytes/line

320GB/s ≡ 10G line/s ≡ 40G double/s

At worst, each flop requires 2 inputs and has 1 output,
forcing loading of 3 lines =⇒ 3 Gflops

If all 4 doubles/line are used, increases to 13 Gflops

To get up to 2TFlops needs about 50 flops per double
transferred to/from device memory

Even with careful implementation, many algorithms are
bandwidth-limited not compute-bound

Lecture 2 – p. 10

Practical 1 kernel
__global__ void my_first_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[tid] = threadIdx.x;
}

32 threads in a warp will address neighbouring
elements of array x

if the data is correctly “aligned” so that x[0] is at the
beginning of a cache line, then x[0] – x[31] will be in
same cache line – a “coalesced” transfer

hence we get perfect spatial locality

Lecture 2 – p. 11

A bad kernel
__global__ void bad_kernel(float *x)
{
int tid = threadIdx.x + blockDim.x*blockIdx.x;

x[1000*tid] = threadIdx.x;
}

in this case, different threads within a warp access
widely spaced elements of array x – a “strided” array
access

each access involves a different cache line, so
performance will be awful

Lecture 2 – p. 12

Global arrays

So far, concentrated on global / device arrays:

held in the large device memory

allocated by host code

pointers held by host code and passed into kernels

continue to exist until freed by host code

since blocks execute in an arbitrary order, if one block
modifies an array element, no other block should read
or write that same element

Lecture 2 – p. 13

Global variables

Global variables can also be created by declarations with
global scope within kernel code file

__device__ int reduction_lock=0;

__global__ void kernel_1(...) {
...

}

__global__ void kernel_2(...) {
...

}

Lecture 2 – p. 14

Global variables

the __device__ prefix tells nvcc this is a global
variable in the GPU, not the CPU.

the variable can be read and modified by any kernel

its lifetime is the lifetime of the whole application

can also declare arrays of fixed size

can read/write by host code using special routines
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or with standard cudaMemcpy in combination with
cudaGetSymbolAddress

in my own CUDA programming, I rarely use this
capability but it is occasionally very useful

Lecture 2 – p. 15

Constant variables

Very similar to global variables, except that they can’t be
modified by kernels:

defined with global scope within the kernel file using the
prefix __constant__

initialised by the host code using
cudaMemcpyToSymbol, cudaMemcpyFromSymbol
or cudaMemcpy in combination with
cudaGetSymbolAddress

I use it all the time in my applications; practical 2 has an
example

Lecture 2 – p. 16

Constant variables

Only 64KB of constant memory, but big benefit is that each
SM has a 10KB cache

when all threads read the same constant, almost as fast
as a register

doesn’t tie up a register, so very helpful in minimising
the total number of registers required

Lecture 2 – p. 17

Constants

A constant variable has its value set at run-time

But code also often has plain constants whose value is
known at compile-time:

#define PI 3.1415926f

a = b / (2.0f * PI);

Leave these as they are – they seem to be embedded into
the executable code so they don’t use up any registers

Don’t forget the f at the end if you want single precision;
in C/C++

single× double = double
Lecture 2 – p. 18

Registers

Within each kernel, by default, individual variables are
assigned to registers:
__global__ void lap(int I, int J,

float *u1, float *u2) {
int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {
u2[id] = 0.25f * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

} Lecture 2 – p. 19

Registers

64K 32-bit registers per SM

up to 255 registers per thread

up to 2048 threads (at most 1024 per thread block)

max registers per thread =⇒ 256 threads

max threads =⇒ 32 registers per thread

big difference between “fat” and “thin” threads

Lecture 2 – p. 20

Registers

What happens if your application needs more registers?

They “spill” over into L1 cache, and from there to device
memory – precise mechanism unclear, but

either certain variables become device arrays with one
element per thread

or the contents of some registers get “saved” to device
memory so they can used for other purposes, then the data
gets “restored” later

Either way, the application suffers from the latency and
bandwidth implications of using device memory

Lecture 2 – p. 21

Local arrays

What happens if your application uses a little array?

__global__ void lap(float *u) {

float ut[3];

int tid = threadIdx.x + blockIdx.x*blockDim.x;

for (int k=0; k<3; k++)
ut[k] = u[tid+k*gridDim.x*blockDim.x];

for (int k=0; k<3; k++)
u[tid+k*gridDim.x*blockDim.x] =
A[3*k]*ut[0]+A[3*k+1]*ut[1]+A[3*k+2]*ut[2];

}
Lecture 2 – p. 22

Local arrays

In simple cases like this (quite common) compiler converts
to scalar registers:

__global__ void lap(float *u) {
int tid = threadIdx.x + blockIdx.x*blockDim.x;
float ut0 = u[tid+0*gridDim.x*blockDim.x];
float ut1 = u[tid+1*gridDim.x*blockDim.x];
float ut2 = u[tid+2*gridDim.x*blockDim.x];

u[tid+0*gridDim.x*blockDim.x] =
A[0]*ut0 + A[1]*ut1 + A[2]*ut2;

u[tid+1*gridDim.x*blockDim.x] =
A[3]*ut0 + A[4]*ut1 + A[5]*ut2;

u[tid+2*gridDim.x*blockDim.x] =
A[6]*ut0 + A[7]*ut1 + A[8]*ut2;

}
Lecture 2 – p. 23

Local arrays

In more complicated cases, it puts the array into device
memory

this is because registers are not dynamically
addressable – compiler has to specify exactly which
registers are used for each instruction

still referred to in the documentation as a “local array”
because each thread has its own private copy

held in L1 cache by default, may never be transferred to
device memory

48kB of L1 cache equates to 12k 32-bit variables,
which is only 12 per thread when using 1024 threads

beyond this, it will have to spill to device memory

Lecture 2 – p. 24

Shared memory

In a kernel, the prefix __shared__ as in

__shared__ int x_dim;
__shared__ float x[128];

declares data to be shared between all of the threads in
the thread block – any thread can set its value, or read it.

There can be several benefits:

essential for operations requiring communication
between threads (e.g. summation in lecture 4)

useful for data re-use

alternative to local arrays in device memory

Lecture 2 – p. 25

Shared memory

If a thread block has more than one warp, it’s not
pre-determined when each warp will execute its instructions
– warp 1 could be many instructions ahead of warp 2,
or well behind.

Consequently, almost always need thread synchronisation
to ensure correct use of shared memory.

Instruction

__syncthreads();

inserts a “barrier”; no thread/warp is allowed to proceed
beyond this point until the rest have reached it (like a roll
call on a school outing)

Lecture 2 – p. 26

Shared memory

So far, have discussed statically-allocated shared memory
– the size is known at compile-time

Can also create dynamic shared-memory arrays but this is
more complex

Total size is specified by an optional third argument when
launching the kernel:
kernel<<<blocks,threads,shared_bytes>>>(...)

Using this within the kernel function is complicated/tedious;
see B.2.3 in Programming Guide

Lecture 2 – p. 27

Read-only arrays

With “constant” variables, each thread reads the same
value.

In other cases, we have arrays where the data doesn’t
change, but different threads read different items.

In this case, can get improved performance by telling the
compiler by declaring global array with

const restrict

qualifiers so that the compiler knows that it is read-only

Lecture 2 – p. 28

Non-blocking loads/stores

What happens with the following code?

__global__ void lap(float *u1, float *u2) {
float a;

a = u1[threadIdx.x + blockIdx.x*blockDim.x]
...
...
c = b*a;
u2[threadIdx.x + blockIdx.x*blockDim.x] = c;
...
...

}

Load doesn’t block until needed; store also doesn’t block

Lecture 2 – p. 29

Active blocks per SM

Each block require certain resources:

threads

registers (registers per thread × number of threads)

shared memory (static + dynamic)

Together these determine how many blocks can be run
simultaneously on each SM – up to a maximum of 32 blocks

Lecture 2 – p. 30

Active blocks per SM

My general advice:

number of active threads depends on number
of registers each needs

good to have at least 4 active blocks,
each with at least 128 threads

smaller number of blocks when each needs
lots of shared memory

larger number of blocks when they don’t need
shared memory

Lecture 2 – p. 31

Active blocks per SM

On Pascal:

maybe 4 big blocks (512 threads) if each needs a lot of
shared memory

maybe 12 small blocks (128 threads) if no shared
memory needed

or 4 small blocks (128 threads) if each thread needs
lots of registers

Very important to experiment with different block sizes to
find what gives the best performance.

Lecture 2 – p. 32

Summary

dynamic device arrays

static device variables / arrays

constant variables / arrays

registers

spilled registers

local arrays

shared variables / arrays

Lecture 2 – p. 33

Key reading

CUDA Programming Guide, version 9.0:

Appendix B.1-B.4 – essential

Chapter 3, sections 3.2.1-3.2.3

Other reading:

Wikipedia article on caches:
en.wikipedia.org/wiki/CPU cache

web article on caches:
lwn.net/Articles/252125/

“Memory Performance and Cache Coherency Effects
on an Intel Nehalem Multiprocessor System”:
portal.acm.org/citation.cfm?id=1637764

Lecture 2 – p. 34

Lecture 3: control flow and
synchronisation

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 3 – p. 1

Warp divergence

Threads are executed in warps of 32, with all threads in the
warp executing the same instruction at the same time.

What happens if different threads in a warp need to do
different things?

if (x<0.0)
z = x-2.0;

else
z = sqrt(x);

This is called warp divergence – CUDA will generate correct
code to handle this, but to understand the performance you
need to understand what CUDA does with it

Lecture 3 – p. 2

Warp divergence

This is not a new problem.

Old CRAY vector supercomputers had a logical merge
vector instruction

z = p ? x : y;

which stored the relevant element of the input vectors x,y
depending on the logical vector p

for(i=0; i<I; i++) {
if (p[i]) z[i] = x[i];
else z[i] = y[i];

}

Lecture 3 – p. 3

Warp divergence

Similarly, NVIDIA GPUs have predicated instructions which
are carried out only if a logical flag is true.

p: a = b + c; // computed only if p is true

In the previous example, all threads compute the logical
predicate and two predicated instructions

p = (x<0.0);
p: z = x-2.0; // single instruction
!p: z = sqrt(x);

Lecture 3 – p. 4

Warp divergence

Note that:

sqrt(x) would usually produce a NaN when x<0, but
it’s not really executed when x<0 so there’s no problem

all threads execute both conditional branches, so
execution cost is sum of both branches
=⇒ potentially large loss of performance

Lecture 3 – p. 5

Warp divergence

Another example:

if (n>=0)
z = x[n];

else
z = 0;

x[n] is only read here if n>=0

don’t have to worry about illegal memory accesses
when n is negative

Lecture 3 – p. 6

Warp divergence

If the branches are big, nvcc compiler inserts code to
check if all threads in the warp take the same branch
(warp voting) and then branches accordingly.

p = ...

if (any(p)) {
p: ...
p: ...

}

if (any(!p)) {
!p: ...
!p: ...

}

Lecture 3 – p. 7

Warp divergence

Note:

doesn’t matter what is happening with other warps
– each warp is treated separately

if each warp only goes one way that’s very efficient

warp voting costs a few instructions, so for very simple
branches the compiler just uses predication without
voting

Lecture 3 – p. 8

Warp divergence

In some cases, can determine at compile time that all
threads in the warp must go the same way

e.g. if case is a run-time argument

if (case==1)
z = x*x;

else
z = x+2.3;

In this case, there’s no need to vote

Lecture 3 – p. 9

Warp divergence

Warp divergence can lead to a big loss of parallel efficiency
– one of the first things I look out for in a new application.

In worst case, effectively lose factor 32× in performance if
one thread needs expensive branch, while rest do nothing

Typical example: PDE application with boundary conditions

if boundary conditions are cheap, loop over all nodes
and branch as needed for boundary conditions

if boundary conditions are expensive, use two kernels:
first for interior points, second for boundary points

Lecture 3 – p. 10

Warp divergence

Another example: processing a long list of elements where,
depending on run-time values, a few require very expensive
processing

GPU implementation:

first process list to build two sub-lists of “simple” and
“expensive” elements

then process two sub-lists separately

Note: none of this is new – this is what we did more than 25
years ago on CRAY and Thinking Machines systems.

What’s important is to understand hardware behaviour and
design your algorithms / implementation accordingly

Lecture 3 – p. 11

Synchronisation

Already introduced __syncthreads(); which forms a
barrier – all threads wait until every one has reached this
point.

When writing conditional code, must be careful to make
sure that all threads do reach the __syncthreads();

Otherwise, can end up in deadlock

Lecture 3 – p. 12

Typical application

// load in data to shared memory
...
...
...

// synchronisation to ensure this has finished

__syncthreads();

// now do computation using shared data
...
...
...

Lecture 3 – p. 13

Synchronisation

There are other synchronisation instructions which are
similar but have extra capabilities:

int __syncthreads_count(predicate)

counts how many predicates are true

int __syncthreads_and(predicate)

returns non-zero (true) if all predicates are true

int __syncthreads_or(predicate)

returns non-zero (true) if any predicate is true

I’ve not used these, and don’t currently see a need for them

Lecture 3 – p. 14

Warp voting

There are similar warp voting instructions which operate at
the level of a warp:

int __all(predicate)

returns non-zero (true) if all predicates in warp are true

int __any(predicate)

returns non-zero (true) if any predicate is true

unsigned int __ballot(predicate)

sets nth bit based on nth predicate

Again, I’ve never used these

Lecture 3 – p. 15

Atomic operations

Occasionally, an application needs threads to update a
counter in shared memory.

__shared__ int count;

...

if (...) count++;

In this case, there is a problem if two (or more) threads try
to do it at the same time

Lecture 3 – p. 16

Atomic operations

Using standard instructions, multiple threads in the same
warp will only update it once.

❄

time

thread 0 thread 1 thread 2 thread 3

read read read read

add add add add

write write write write

Lecture 3 – p. 17

Atomic operations

With atomic instructions, the read/add/write becomes a
single operation, and they happen one after the other

❄

time

thread 0 thread 1 thread 2 thread 3

read/add/write

read/add/write

read/add/write

read/add/write

Lecture 3 – p. 18

Atomic operations

Several different atomic operations are supported,
almost all only for integers:

addition (integers, 32-bit floats – also 64-bit in Pascal)

minimum / maximum

increment / decrement

exchange / compare-and-swap

bitwise AND / OR / XOR

These are fast for variables in shared memory, and only
slightly slower for data in device global memory (operations
performed in L2 cache)

Lecture 3 – p. 19

Atomic operations

Compare-and-swap:
int atomicCAS(int* address,int compare,int val);

if compare equals old value stored at address then
val is stored instead

in either case, routine returns the value of old

seems a bizarre routine at first sight, but can be very
useful for atomic locks

also can be used to implement 64-bit floating point
atomic addition (now available in hardware in Pascal)

Lecture 3 – p. 20

Global atomic lock

// global variable: 0 unlocked, 1 locked
__device__ int lock=0;

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
// set lock
do {} while(atomicCAS(&lock,0,1));

...

// free lock
lock = 0;

}
} Lecture 3 – p. 21

Global atomic lock

Problem: when a thread writes data to device memory the
order of completion is not guaranteed, so global writes may
not have completed by the time the lock is unlocked

__global__ void kernel(...) {
...

if (threadIdx.x==0) {
do {} while(atomicCAS(&lock,0,1));
...
__threadfence(); // wait for writes to finish

// free lock
lock = 0;

}
} Lecture 3 – p. 22

__threadfence

__threadfence_block();

wait until all global and shared memory writes are
visible to

all threads in block

__threadfence();

wait until all global and shared memory writes are
visible to

all threads in block
all threads, for global data

Lecture 3 – p. 23

Atomic addition for double

// atomic addition from Jon Cohen at NVIDIA

static double atomicAdd(double *addr, double val)
{
double old=*addr, assumed;

do {
assumed = old;
old = __longlong_as_double(

atomicCAS((unsigned long long int*)addr,
__double_as_longlong(assumed),
__double_as_longlong(val+assumed)));

} while(assumed!=old);

return old;
} Lecture 3 – p. 24

Summary

lots of esoteric capabilities – don’t worry about most of
them

essential to understand warp divergence – can have a
very big impact on performance

__syncthreads() is vital – will see another use of it
in next lecture

the rest can be ignored until you have a critical need
– then read the documentation carefully and look for
examples in the SDK

Lecture 3 – p. 25

Key reading

CUDA Programming Guide, version 9.0:

Section 5.4.2: control flow and predicates

Section 5.4.3: synchronization

Appendix B.5: __threadfence() and variants

Appendix B.6: __syncthreads() and variants

Appendix B.12: atomic functions

Appendix B.13: warp voting

Appendix C: Cooperative Groups – this is new in CUDA
9.0 and may lead to changes/updates in some of the
material in this lecture

Lecture 3 – p. 26

2D Laplace solver

Jacobi iteration to solve discrete Laplace equation on a
uniform grid:

for (int j=0; j<J; j++) {
for (int i=0; i<I; i++) {

id = i + j*I; // 1D memory location

if (i==0 || i==I-1 || j==0 || j==J-1)
u2[id] = u1[id];

else
u2[id] = 0.25*(u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

}

Lecture 3 – p. 27

2D Laplace solver

How do we tackle this with CUDA?

each thread responsible for one grid point

each block of threads responsible for a block of the grid

conceptually very similar to data partitioning in MPI
distributed-memory implementations, but much simpler

(also similar to blocking techniques to squeeze the best
cache performance out of CPUs)

great example of usefulness of 2D blocks and 2D “grid”s

Lecture 3 – p. 28

2D Laplace solver

❅❅
��

Lecture 3 – p. 29

2D Laplace solver

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

rrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r rrrr
rrr
rr

rrr
rrr
rr

r r r r r r r r

r r r r r r r r

Lecture 3 – p. 30

2D Laplace solver

ss
ss
ss
ss

ss
ss
ss
ss

s s s s s s s s

s s s s s s s s

Each block of threads processes one of these grid blocks,
reading in old values and computing new values

Lecture 3 – p. 31

2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else {
u2[id] = 0.25 * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

} Lecture 3 – p. 32

2D Laplace solver

Assumptions:

I is a multiple of blockDim.x

J is a multiple of blockDim.y

hence grid breaks up perfectly into blocks

Can remove these assumptions by testing whether
i, j are within grid

Lecture 3 – p. 33

2D Laplace solver

threads

✲ I

✻

J

real grid

Lecture 3 – p. 34

2D Laplace solver

__global__ void lap(int I, int J,
const float* __restrict__ u1,

float* __restrict__ u2) {

int i = threadIdx.x + blockIdx.x*blockDim.x;
int j = threadIdx.y + blockIdx.y*blockDim.y;
int id = i + j*I;

if (i==0 || i==I-1 || j==0 || j==J-1) {
u2[id] = u1[id]; // Dirichlet b.c.’s

}
else if (i<I && j<J) {
u2[id] = 0.25f * (u1[id-1] + u1[id+1]

+ u1[id-I] + u1[id+I]);
}

} Lecture 3 – p. 35

2D Laplace solver
How does cache function in this application?

qqq
qqq
qq

qqq
qqq
qq

q q q q q q q q q q q q q q q q

q q q q q q q q q q q q q q q q

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

qqq
qqq
qq

if block size is a multiple of 32 in x-direction, then
interior corresponds to set of complete cache lines

“halo” points above and below are full cache lines too

“halo” points on side are the problem – each one
requires the loading of an entire cache line

optimal block shape has aspect ratio of roughly 32:1
(or 8:1 if cache line is 32 bytes) Lecture 3 – p. 36

3D Laplace solver

practical 3

each thread does an entire line in z-direction

x, y dimensions cut up into blocks in the same way
as 2D application

laplace3d.cu and laplace3d kernel.cu
follow same approach described above

this used to give the fastest implementation, but a new
version uses 3D thread blocks, with each thread
responsible for just 1 grid point

the new version has lots more integer operations, but
is still faster (due to many more active threads?)

Lecture 3 – p. 37

Lecture 4: warp shuffles,
and reduction / scan operations

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 4 – p. 1

Warp shuffles

Warp shuffles are a faster mechanism for moving data
between threads in the same warp.

There are 4 variants:

shfl up sync
copy from a lane with lower ID relative to caller

shfl down sync
copy from a lane with higher ID relative to caller

shfl xor sync
copy from a lane based on bitwise XOR of own lane ID

shfl sync
copy from indexed lane ID

Here the lane ID is the position within the warp
(threadIdx.x%32 for 1D blocks) Lecture 4 – p. 2

Warp shuffles

T shfl up sync(unsigned mask, T var,
unsigned int delta);

mask controls which threads are involved — usually set
to -1 or 0xffffffff, equivalent to all 1’s

var is a local register variable (int, unsigned int, long
long, unsigned long long, float or double)

delta is the offset within the warp – if the appropriate
thread does not exist (i.e. it’s off the end of the warp)
then the value is taken from the current thread

T shfl down sync(unsigned mask, T var,
unsigned int delta);

defined similarly
Lecture 4 – p. 3

Warp shuffles

T shfl xor sync(unsigned mask, T var, int
laneMask);

an XOR (exclusive or) operation is performed between
laneMask and the calling thread’s laneID to
determine the lane from which to copy the value

(laneMask controls which bits of laneID are “flipped”)

a “butterfly” type of addressing, very useful for reduction
operations and FFTs

T shfl sync(unsigned mask, T var, int
srcLane);

copies data from srcLane
Lecture 4 – p. 4

Warp shuffles

Very important

Threads may only read data from another thread
which is actively participating in the shuffle
command. If the target thread is inactive, the
retrieved value is undefined.

This means you must be very careful with conditional code.

Lecture 4 – p. 5

Warp shuffles

Two ways to sum all the elements in a warp: method 1

for (int i=1; i<32; i*=2)
value += __shfl_xor_sync(-1, value, i);

t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁❆

❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

❆
❆
❆❆

�
�
��

�
�
��

�
�
��

�
�
��❅

❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅�

�
��

�
�
��

�
�
��

�
�
��❅

❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅
❅❅

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍ ✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

❍❍❍❍❍❍❍

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❳❳❳❳❳❳❳❳❳❳❳❳❳❳

❄

Lecture 4 – p. 6

Warp shuffles

Two ways to sum all the elements in a warp: method 2

for (int i=16; i>0; i=i/2)
value += __shfl_down_sync(-1, value, i);

t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t
t t t t t t t t t t t t t t t t

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

✁
✁
✁✁

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

❄

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�

��
✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�

��

�
�

��
✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✁
✁
✁✁

�
�
��

�
�
��

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

Lecture 4 – p. 7

Reduction

The most common reduction operation is computing the
sum of a large array of values:

averaging in Monte Carlo simulation

computing RMS change in finite difference computation
or an iterative solver

computing a vector dot product in a CG or GMRES
iteration

Lecture 4 – p. 8

Reduction

Other common reduction operations are to compute a
minimum or maximum.

Key requirements for a reduction operator ◦ are:

commutative: a ◦ b = b ◦ a
associative: a ◦ (b ◦ c) = (a ◦ b) ◦ c

Together, they mean that the elements can be re-arranged
and combined in any order.

(Note: in MPI there are special routines to perform
reductions over distributed arrays.)

Lecture 4 – p. 9

Approach

Will describe things for a summation reduction – the
extension to other reductions is obvious

Assuming each thread starts with one value, the approach
is to

first add the values within each thread block, to form a
partial sum

then add together the partial sums from all of the blocks

I’ll look at each of these stages in turn

Lecture 4 – p. 10

Local reduction

The first phase is contructing a partial sum of the values
within a thread block.

Question 1: where is the parallelism?

“Standard” summation uses an accumulator, adding one
value at a time =⇒ sequential

Parallel summation of N values:

first sum them in pairs to get N/2 values

repeat the procedure until we have only one value

Lecture 4 – p. 11

Local reduction

Question 2: any problems with warp divergence?

Note that not all threads can be busy all of the time:

N/2 operations in first phase

N/4 in second

N/8 in third

etc.

For efficiency, we want to make sure that each warp is
either fully active or fully inactive, as far as possible.

Lecture 4 – p. 12

Local reduction

Question 3: where should data be held?

Threads need to access results produced by other threads:

global device arrays would be too slow, so use shared
memory

need to think about synchronisation

Lecture 4 – p. 13

Local reduction

Pictorial representation of the algorithm:✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈
✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈
✈ ✈ ✈ ✈
✈ ✈
✈

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

�
�
�
��

�
�
�
��

✁
✁
✁
✁✁

second half added pairwise to first half
by leading set of threads

Lecture 4 – p. 14

Local reduction

__global__ void sum(float *d_sum,float *d_data)
{
extern __shared__ float temp[];
int tid = threadIdx.x;

temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=blockDim.x>>1; d>=1; d>>=1) {
__syncthreads();
if (tid<d) temp[tid] += temp[tid+d];

}

if (tid==0) d_sum[blockIdx.x] = temp[0];
}

Lecture 4 – p. 15

Local reduction

Note:

use of dynamic shared memory – size has to be
declared when the kernel is called

use of syncthreads to make sure previous
operations have completed

first thread outputs final partial sum into specific place
for that block

could use shuffles when only one warp still active

alternatively, could reduce each warp, put partial sums
in shared memory, and then the first warp could reduce
the sums – requires only one syncthreads

Lecture 4 – p. 16

Global reduction: version 1

This version of the local reduction puts the partial sum for
each block in a different entry in a global array

These partial sums can be transferred back to the host for
the final summation – practical 4

Lecture 4 – p. 17

Global reduction: version 2

Alternatively, can use the atomic add discussed in the
previous lecture, and replace

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) atomicAdd(&d_sum,temp[0]);

Lecture 4 – p. 18

Global reduction: version 2

More general reduction operations could can use the atomic
lock mechanism, also discussed in the previous lecture:

if (tid==0) d_sum[blockIdx.x] = temp[0];

by

if (tid==0) {
do {} while(atomicCAS(&lock,0,1)); // set lock

*d_sum += temp[0];
__threadfence(); // wait for write completion

lock = 0; // free lock
}

Lecture 4 – p. 19

Scan operation

Given an input vector ui, i = 0, . . . , I−1, the objective of a
scan operation is to compute

vj =
∑

i<j

ui for all j < I.

Why is this important?

a key part of many sorting routines

arises also in particle filter methods in statistics

related to solving long recurrence equations:

vn+1 = (1−λn)vn + λnun

a good example that looks impossible to parallelise
Lecture 4 – p. 20

Scan operation

Before explaining the algorithm, here’s the “punch line”:

some parallel algorithms are tricky – don’t expect them
all to be obvious

check the examples in the CUDA SDK, check the
literature using Google – don’t put lots of effort into
re-inventing the wheel

the relevant literature may be 25–30 years old
– back to the glory days of CRAY vector computing
and Thinking Machines’ massively-parallel CM5

Lecture 4 – p. 21

Scan operation

Similar to the global reduction, the top-level strategy is

perform local scan within each block

add on sum of all preceding blocks

Will describe two approaches to the local scan, both similar
to the local reduction

first approach:
very simple using shared memory, but O(N logN)
operations

second approach:
more efficient using warp shuffles and a recursive
structure, with O(N) operations

Lecture 4 – p. 22

Local scan: version 1
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘

❅
❅
❅❘❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥

❍❍❍❍❍❍❥❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

❳❳❳❳❳❳❳❳❳❳❳❳③

after n passes, each sum has local plus preceding 2n−1
values

log2N passes, and O(N) operations per pass
=⇒ O(N logN) operations in total

Lecture 4 – p. 23

Local scan: version 1

__global__ void scan(float *d_data) {

extern __shared__ float temp[];
int tid = threadIdx.x;
temp[tid] = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<blockDim.x; d<<=1) {
__syncthreads();
float temp2 = (tid >= d) ? temp[tid-d] : 0;
__syncthreads();
temp[tid] += temp2;

}

...
}

Lecture 4 – p. 24

Local scan: version 1

Notes:

increment is set to zero if no element to the left

both __syncthreads(); are needed

Lecture 4 – p. 25

Local scan: version 2
The second version starts by using warp shuffles to perform
a scan within each warp, and store the warp sum:

__global__ void scan(float *d_data) {
__shared__ float temp[32];
float temp1, temp2;
int tid = threadIdx.x;
temp1 = d_data[tid+blockIdx.x*blockDim.x];

for (int d=1; d<32; d<<=1) {
temp2 = __shfl_up_sync(-1, temp1,d);
if (tid%32 >= d) temp1 += temp2;

}

if (tid%32 == 31) temp[tid/32] = temp1;
__syncthreads();
...

Lecture 4 – p. 26

Local scan: version 2
Next we perform a scan of the warp sums (assuming no
more than 32 warps):

if (tid < 32) {
temp2 = 0.0f;
if (tid < blockDim.x/32)

temp2 = temp[tid];

for (int d=1; d<32; d<<=1) {
temp3 = __shfl_up_sync(-1, temp2,d);
if (tid%32 >= d) temp2 += temp3;

}
if (tid < blockDim.x/32) temp[tid] = temp2;

}

Lecture 4 – p. 27

Local scan: version 2

Finally, we add the sum of previous warps:

__syncthreads();

if (tid >= 32) temp1 += temp[tid/32 - 1];

...
}

Lecture 4 – p. 28

Global scan: version 1

To complete the global scan there are two options

First alternative:

use one kernel to do local scan and compute partial
sum for each block

use host code to perform a scan of the partial sums

use another kernel to add sums of preceding blocks

Lecture 4 – p. 29

Global scan: version 2

Second alternative – do it all in one kernel call

However, this needs the sum of all preceding blocks to add
to the local scan values

Problem: blocks are not necessarily processed in order,
so could end up in deadlock waiting for results from a block
which doesn’t get a chance to start.

Solution: use atomic increments

Lecture 4 – p. 30

Global scan: version 2

Declare a global device variable

__device__ int my_block_count = 0;

and at the beginning of the kernel code use

__shared__ unsigned int my_blockId;
if (threadIdx.x==0) {
my_blockId = atomicAdd(&my_block_count, 1);

}
__syncthreads();

which returns the old value of my_block_count and
increments it, all in one operation.

This gives us a way of launching blocks in strict order.

Lecture 4 – p. 31

Global scan: version 2

In the second approach to the global scan, the kernel code
does the following:

get in-order block ID

perform scan within the block

wait until another global counter my_block_count2
shows that preceding block has computed the sum of
the blocks so far

get the sum of blocks so far, increment the sum with the
local partial sum, then increment my_block_count2

add previous sum to local scan values and store the
results

Lecture 4 – p. 32

Global scan: version 2

// get global sum, and increment for next block

if (tid == 0) {
// do-nothing atomic forces a load each time
do {} while(atomicAdd(&my_block_count2,0)

< my_blockId);

temp = sum; // copy into register
sum = temp + local; // increment and put back
__threadfence(); // wait for write completion

atomicAdd(&my_block_count2,1);
// faster than plain addition

}

Lecture 4 – p. 33

Scan operation

Conclusion: this is all quite tricky!

Advice: best to first see if you can get working code from
someone else (e.g. investigate Thrust library)

Don’t re-invent the wheel unless you really think you can do
it better.

Lecture 4 – p. 34

Recurrence equation

Given sn, un, want to compute vn defined by

vn = sn vn−1 + un

(Often have
vn = (1−λn) vn−1 + λn un

with 0<λn<1 so this computes a running weighted
average, but that’s not important here.)

Again looks naturally sequential, but in fact it can be
handled in the same way as the scan.

Lecture 4 – p. 35

Recurrence equation

Starting from

vn = sn vn−1 + un

vn−1 = sn−1 vn−2 + un−1

then substituting the second equation into the first gives

vn = (snsn−1) vn−2 + (snun−1 + un)

so (sn−1, un−1), (sn, un) −→ (snsn−1, snun−1 + un)

The same at each level of the scan, eventually giving

vn = s′nv−1 + u′n

where v−1 represents the last element of the previous block.
Lecture 4 – p. 36

Recurrence equation

When combining the results from different blocks we have
the same choices as before:

store s′, u′ back to device memory, combine results for
different blocks on the CPU, then for each block we
have v−1 and can complete the computation of vn
use atomic trick to launch blocks in order, and then after
completing first phase get v−1 from previous block to
complete the computation.

Similarly, the calculation within a block can be performed
using shuffles in a two-stage process:

1. use shuffles to compute solution within each warp

2. use shared memory and shuffles to combine results
from different warps and update solution from first stage

Lecture 4 – p. 37

Lecture 5: libraries and tools
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 5 – p. 1

CUDA libraries

Originally, NVIDIA planned to provide only one or two
maths libraries, but over time these have steadily increased

CUDA math library
all of the standard math functions you would expect
(i.e. very similar to what you would get from Intel)

various exponential and log functions
trigonometric functions and their inverses
hyperbolic functions and their inverses
error functions and their inverses
Bessel and Gamma functions
vector norms and reciprocals (esp. for graphics)
mainly single and double precision – a few in half
precision

Lecture 5 – p. 2

CUDA libraries

cuBLAS

basic linear algebra subroutines for dense matrices
includes matrix-vector and matrix-matrix product
significant input from Vasily Volkov at UC Berkeley;
one routine contributed by Jonathan Hogg from RAL
it is possible to call cuBLAS routines from user
kernels – device API
some support for a single routine call to do a “batch”
of smaller matrix-matrix multiplications
also support for using CUDA streams to do a large
number of small tasks concurrently

Lecture 5 – p. 3

CUDA libraries

cuBLAS is a set of routines to be called by user host code:

helper routines:
memory allocation
data copying from CPU to GPU, and vice versa
error reporting

compute routines:
matrix-matrix and matrix-vector product
Warning! Some calls are asynchronous, i.e. the call
starts the operation but the host code then continues
before it has completed

simpleCUBLAS example in SDK is a good example code

cuBLASxt extends cuBLAS to multiple GPUs
Lecture 5 – p. 4

CUDA libraries

cuFFT
Fast Fourier Transform
1D, 2D, 3D
significant input from Satoshi Matsuoka and others
at Tokyo Institute of Technology
has almost all of the variations found in FFTW and
other CPU libraries?
nothing yet at device level?

Lecture 5 – p. 5

CUDA libraries

Like cuBLAS, it is a set of routines called by user host code:

helper routines include “plan” construction

compute routines perform 1D, 2D, 3D FFTs

it supports doing a “batch” of independent transforms,
e.g. applying 1D transform to a 3D dataset

simpleCUFFT example in SDK

Lecture 5 – p. 6

CUDA libraries

cuSPARSE
various routines to work with sparse matrices
includes sparse matrix-vector and matrix-matrix
products
could be used for iterative solution
also has solution of sparse triangular system
note: batched tridiagonal solver is in cuBLAS not
cuSPARSE
contribution from István Reguly (Oxford)

Lecture 5 – p. 7

CUDA libraries

cuRAND
random number generation
XORWOW, mrg32k3a, Mersenne Twister and
Philox 4x32 10 pseudo-random generators
Sobol quasi-random generator (with optimal
scrambling)
uniform, Normal, log-Normal, Poisson outputs
includes device level routines for RNG within user
kernels

cuSOLVER:
key LAPACK dense solvers, 3 – 6x faster than MKL
sparse direct solvers, 2–14x faster than CPU
equivalents

Lecture 5 – p. 8

CUDA libraries

CUB
provides a collection of basic building blocks at three
levels: device, thread block, warp
functions include sort, scan, reduction
Thrust uses CUB for CUDA version of key algorithms

AmgX (originally named NVAMG)
library for algebraic multigrid
available from
http://developer.nvidia.com/amgx

Lecture 5 – p. 9

CUDA Libraries

cuDNN
library for Deep Neural Networks
some parts developed by Jeremy Appleyard
(NVIDIA) working in Oxford

nvGraph
Page Rank, Single Source Shortest Path, Single
Source Widest Path

NPP (NVIDIA Performance Primitives)
library for imaging and video processing
includes functions for filtering, JPEG decoding, etc.

CUDA Video Decoder API
Lecture 5 – p. 10

CUDA Libraries

Thrust
high-level C++ template library with an interface
based on the C++ Standard Template Library (STL)
very different philosopy to other libraries; users write
standard C++ code (no CUDA) but get the benefits
of GPU parallelisation
also supports x86 execution
relies on C++ object-oriented programming; certain
objects exist on the GPU, and operations involving
them are implicitly performed on the GPU
I’ve not used it, but for some applications it can be
very powerful – e.g. lots of built-in functions for
operations like sort and scan
also simplifies memory management and data
movement Lecture 5 – p. 11

CUDA Libraries

Kokkos
another high-level C++ template library
developed in the US DoE Labs, so considerable
investment in both capabilities and on-going
software maintenance
again I’ve not used it, but possibly worth investigating
for more information see
https://github.com/kokkos/kokkos/wiki
https://trilinos.org/packages/kokkos/

Lecture 5 – p. 12

Useful header files

dbldbl.h available from
https://gist.github.com/seibert/5914108
Header file for double-double arithmetic for
quad-precision (developed by NVIDIA, but published
independently under the terms of the BSD license)

cuComplex.h part of the standard CUDA distribution
Header file for complex arithmetic – defines a class and
overloaded arithmetic operations.

helper math.h available in CUDA SDK
Defines operator-overloading operations for CUDA
intrinsic vector datatypes such as float4

Lecture 5 – p. 13

Other libraries

MAGMA
a new LAPACK for GPUs – higher level numerical
linear algebra, layered on top of CUBLAS
open source – freely available
developed by Jack Dongarra, Jim Demmel and
others

Lecture 5 – p. 14

Other libraries

ArrayFire from Accelereyes:
was commercial software, but now open source
supports both CUDA and OpenCL execution
C, C++ and Fortran interfaces
wide range of functionality including linear algebra,
image and signal processing, random number
generation, sorting
www.accelereyes.com/products/arrayfire

NVIDIA maintains webpages with links to a variety of CUDA
libraries:
developer.nvidia.com/gpu-accelerated-libraries
and other tools:
developer.nvidia.com/tools-ecosystem

Lecture 5 – p. 15

The 7 dwarfs

Phil Colella, senior researcher at Lawrence Berkeley
National Laboratory, talked about “7 dwarfs” of
numerical computation in 2004

expanded to 13 by a group of UC Berkeley professors
in a 2006 report: “A View from Berkeley”

www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

key algorithmic kernels in many scientific computing
applications

very helpful to focus attention on HPC challenges and
development of libraries and problem-solving
environments/frameworks.

Lecture 5 – p. 16

The 7 dwarfs

dense linear algebra

sparse linear algebra

spectral methods

N-body methods

structured grids

unstructured grids

Monte Carlo

Lecture 5 – p. 17

Dense linear algebra

cuBLAS

cuSOLVER

MAGMA

ArrayFire

Lecture 5 – p. 18

Sparse linear algebra

iterative solvers:
some available in PetSc
others can be implemented using sparse
matrix-vector multiplication from cuSPARSE
NVIDIA has AmgX, an algebraic multigrid library

direct solvers:
NVIDIA’s cuSOLVER
SuperLU project at University of Florida (Tim Davis)
www.cise.ufl.edu/ davis/publications files/qrgpu paper.pdf

project at RAL (Jennifer Scott & Jonathan Hogg)
https://epubs.stfc.ac.uk/work/12189719

Lecture 5 – p. 19

Spectral methods

cuFFT
library provided / maintained by NVIDIA

nothing else needed?

Lecture 5 – p. 20

N-body methods

OpenMM

http://openmm.org/

open source package to support molecular
modelling, developed at Stanford

Fast multipole methods:
ExaFMM by Yokota and Barba:
http://www.bu.edu/exafmm/

FMM2D by Holm, Engblom, Goude, Holmgren:
http://user.it.uu.se/∼stefane/freeware
software by Takahashi, Cecka, Fong, Darve:
onlinelibrary.wiley.com/doi/10.1002/nme.3240/pdf

Lecture 5 – p. 21

Structured grids

lots of people have developed one-off applications

no great need for a library for single block codes
(though possible improvements from “tiling”?)

multi-block codes could benefit from a general-purpose
library, mainly for MPI communication

Oxford OPS project has developed a high-level
open-source framework for multi-block codes,
using GPUs for code execution and MPI for
distributed-memory message-passing

all implementation details are hidden from “users”, so
they don’t have to know about GPU/MPI programming

Lecture 5 – p. 22

Unstructured grids

In addition to GPU implementations of specific codes there
are projects to create high-level solutions which others can
use for their application codes:

Alonso, Darve and others (Stanford)

Oxford / Imperial College project developed OP2,
a general-purpose open-source framework based on
a previous framework built on MPI

May be other work I’m not aware of

Lecture 5 – p. 23

Monte Carlo

NVIDIA cuRAND library

Accelereyes ArrayFire library

some examples in CUDA SDK distribution

nothing else needed except for more output
distributions?

Lecture 5 – p. 24

Tools

Debugging:

cuda-memcheck
detects array out-of-bounds errors, and mis-aligned
device memory accesses – very useful because such
errors can be tough to track down otherwise

cuda-memcheck --tool racecheck
this checks for shared memory race conditions:

Write-After-Write (WAW): two threads write data to
the same memory location but the order is uncertain
Read-After-Write (RAW) and Write-After-Read
(WAR): one thread writes and another reads, but the
order is uncertain

cuda-memcheck --tool initcheck
detects reading of uninitialised device memory

Lecture 5 – p. 25

Tools
Other languages:

FORTRAN: PGI (Portland Group) CUDA FORTRAN
compiler with natural FORTRAN equivalent to CUDA C;
also IBM FORTRAN XL for new DoE systems

MATLAB: can call kernels directly, or use OOP like
Thrust to define MATLAB objects which live on the GPU
http://www.oerc.ox.ac.uk/projects/cuda-centre-excellence/matlab-gpus

Mathematica: similar to MATLAB?

Python: http://mathema.tician.de/software/pycuda

https://store.continuum.io/cshop/accelerate/

R: http://www.fuzzyl.com/products/gpu-analytics/

http://cran.r-project.org/web/views/HighPerformanceComputing.html

Haskell: https://hackage.haskell.org/package/cuda

http://hackage.haskell.org/package/accelerate

Lecture 5 – p. 26

Tools

OpenACC (“More Science, Less Programming”):

like Thrust, aims to hide CUDA programming by doing
everything in the top-level CPU code

programmer takes standard C/C++/Fortran code and
inserts pragmas saying what can be done in parallel
and where data should be located

https://www.openacc.org/

OpenMP 4.0 is similar but newer:

strongly pushed by Intel to accommodate Xeon Phi and
unify things, in some sense

on-demand.gputechconf.com/gtc/2016/presentation/

s6510-jeff-larkin-targeting-gpus-openmp.pdf
Lecture 5 – p. 27

Tools

Integrated Development Environments (IDE):

Nsight Visual Studio edition – NVIDIA plug-in for
Microsoft Visual Studio
developer.nvidia.com/nvidia-nsight-visual-studio-edition

Nsight Eclipse edition – IDE for Linux systems
developer.nvidia.com/nsight-eclipse-edition

these come with editor, debugger, profiler integration

Lecture 5 – p. 28

Tools

NVIDIA Visual Profiler nvprof:

standalone software for Linux and Windows systems

uses hardware counters to collect a lot of useful
information

I think only 1 SM is instrumented – implicitly assumes
the others are behaving similarly

lots of things can be measured, but a limited number of
counters, so it runs the application multiple times if
necessary to get full info

can also obtain instruction counts from command line:
nvprof --metrics "flops sp,flops dp" prac2

do nvprof --help for more info on other options

Lecture 5 – p. 29

Summary

active work on all of the dwarfs

in most cases, significant effort to develop general
purpose libraries or frameworks, to enable users to get
the benefits without being CUDA experts

too much going on for one person (e.g. me) to keep
track of it all

NVIDIA maintains a webpage with links to CUDA
tools/libraries:
developer.nvidia.com/cuda-tools-ecosystem

the existence of this eco-system is part of why I think
CUDA will remain more used than OpenCL for HPC

Lecture 5 – p. 30

Lecture 6: odds and ends
Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 6 – p. 1

Overview

synchronicity

multiple streams and devices

multiple GPUs

other odds and ends

Lecture 6 – p. 2

Warnings

I haven’t tried most of what I will describe

some of these things have changed from one version of
CUDA to the next – everything here is for the latest
version

overall, keep things simple unless it’s really needed for
performance

if it is, proceed with extreme caution, do practical 11,
and check out the examples in the SDK

Lecture 6 – p. 3

Synchronicity

A computer system has lots of components:

CPU(s)

GPU(s)

memory controllers

network cards

Many of these can be doing different things at the same
time – usually for different processes, but sometimes
for the same process

Lecture 6 – p. 4

Synchronicity

The von Neumann model of a computer program is
synchronous with each computational step taking place
one after another

this is an idealisation – almost never true in practice

compiler frequently generates code with overlapped
instructions (pipelined CPUs) and does other
optimisations which re-arrange execution order and
avoid redundant computations

however, it is usually true that as a programmer you can
think of it as a synchronous execution when working out
whether it gives the correct results

when things become asynchronous, the programmer
has to think very carefully about what is happening and
in what order Lecture 6 – p. 5

Synchronicity

With GPUs we have to think even more carefully:

host code executes on the CPU(s);
kernel code executes on the GPU(s)

. . . but when do the different bits take place?

. . . can we get better performance by being clever?

. . . might we get the wrong results?

Key thing is to try to get a clear idea of what is going on
– then you can work out the consequences

Lecture 6 – p. 6

GPU code

for each warp, code execution is effectively
synchronous

different warps execute in an arbitrary overlapped
fashion – use syncthreads() if necessary to
ensure correct behaviour

different thread blocks execute in an arbitrary
overlapped fashion

All of this has been described over the past 3 days
– nothing new here.

The focus of these new slides is on host code and the
implications for CPU and GPU execution

Lecture 6 – p. 7

Host code

Simple/default behaviour:

1 CPU

1 GPU

1 thread on CPU (i.e. scalar code)

1 default “stream” on GPU

Lecture 6 – p. 8

Host code

most CUDA calls are synchronous / blocking:

example: cudaMemcpy

host call starts the copying and waits until it has
finished before the next instruction in the host code
why? – ensures correct execution if subsequent host
code reads from, or writes to, the data being copied

Lecture 6 – p. 9

Host code

CUDA kernel launch is asynchronous / non-blocking
host call starts the kernel execution, but doesn’t wait
for it to finish before going on to next instruction

similar for cudaMemcpyAsync
starts the copy but doesn’t wait for completion
has to be done through a “stream” with page-locked
memory (also known as pinned memory) – see
documentation

in both cases, host eventually waits when at a
cudaDeviceSynchronize() call

benefit? – in general, doesn’t affect correct execution,
and might improve performance by overlapping CPU
and GPU execution

Lecture 6 – p. 10

Host code

What could go wrong?

kernel timing – need to make sure it’s finished

could be a problem if the host uses data which is
read/written directly by kernel, or transferred by
cudaMemcpyAsync

cudaDeviceSynchronize() can be used to ensure
correctness (similar to syncthreads() for kernel
code)

Lecture 6 – p. 11

Multiple Streams

Quoting from section 3.2.5.5 in the CUDA Programming
Guide:

Applications manage concurrency through streams.

A stream is a sequence of commands (possibly
issued by different host threads) that execute in
order.

Different streams, on the other hand, may execute
their commands out of order with respect to one
another or concurrently.

Lecture 6 – p. 12

Multiple Streams

Optional stream argument for

kernel launch

cudaMemcpyAsync

with streams creating using cudaStreamCreate

Within each stream, CUDA operations are carried out in
order (i.e. FIFO – first in, first out); one finishes before the
next starts

Key to getting better performance is using multiple streams
to overlap things

Lecture 6 – p. 13

Page-locked memory

Section 3.2.4:

host memory is usually paged, so run-time system
keeps track of where each page is located

for higher performance, can fix some pages, but means
less memory available for everything else

CUDA uses this for better host <–> GPU bandwidth,
and also to hold “device” arrays in host memory

can provide up to 100% improvement in bandwidth

also, it is required for cudaMemcpyAsync

allocated using cudaHostAlloc, or registered by
cudaHostRegister

Lecture 6 – p. 14

Default stream

The way the default stream behaves in relation to others
depends on a compiler flag:

no flag, or --default-stream legacy

old (bad) behaviour in which a cudaMemcpy or kernel
launch on the default stream blocks/synchronizes with
other streams

--default-stream per-thread

new (good) behaviour in which the default stream
doesn’t affect the others

note: flag label is a bit odd – it has other effects too

Lecture 6 – p. 15

Practical 11
cudaStream_t streams[8];

float *data[8];

for (int i = 0; i < 8; i++) {

cudaStreamCreate(&streams[i]);

cudaMalloc(&data[i], N * sizeof(float));

// launch one worker kernel per stream

kernel<<<1, 64, 0, streams[i]>>>(data[i], N);

// do a Memcpy and launch a dummy kernel on default stream

cudaMemcpy(d_data,h_data,sizeof(float),

cudaMemcpyHostToDevice);

kernel<<<1, 1>>>(d_data, 0);

}

cudaDeviceSynchronize();
Lecture 6 – p. 16

Default stream

The second (main?) effect of the flag comes when using
multiple threads (e.g. OpenMP or POSIX multithreading)

In this case the effect of the flag is to create separate
independent (i.e. non-interfering) default streams for each
thread

Using multiple default streams, one per thread, is a good
alternative to using multiple “proper” streams

Lecture 6 – p. 17

Practical 11
omp_set_num_threads(8);

float *data[8];

for (int i = 0; i < 8; i++)

cudaMalloc(&data[i], N * sizeof(float));

#pragma omp parallel for

for (int i = 0; i < 8; i++) {

printf(" thread ID = %d \n",omp_get_thread_num());

// launch one worker kernel per thread

kernel<<<1, 64>>>(data[i], N);

}

cudaDeviceSynchronize();

Lecture 6 – p. 18

Stream commands

Each stream executes a sequence of kernels, but
sometimes you also need to do something on the host.

There are at least two ways of coordinating this:

use a separate thread for each stream
it can wait for the completion of all pending tasks,
then do what’s needed on the host

use just one thread for everything
for each stream, add a callback function to be
executed (by a new thread) when the pending tasks
are completed
it can do what’s needed on the host, and then launch
new kernels (with a possible new callback) if wanted

Lecture 6 – p. 19

Stream commands

cudaStreamCreate()
creates a stream and returns an opaque “handle”

cudaStreamSynchronize()
waits until all preceding commands have completed

cudaStreamQuery()
checks whether all preceding commands have
completed

cudaStreamAddCallback()
adds a callback function to be executed on the host
once all preceding commands have completed

Lecture 6 – p. 20

Stream events

Useful for synchronisation and timing between streams:

cudaEventCreate(event)
creates an “event”

cudaEventRecord(event,stream)
puts an event into a stream (by default, stream 0)

cudaEventSynchronize(event)
CPU waits until event occurs

cudaStreamWaitEvent(stream,event)
stream waits until event occurs

cudaEventQuery(event)
check whether event has occured

cudaEventElapsedTime(time,event1,event2)
Lecture 6 – p. 21

Multiple devices

What happens if there are multiple GPUs?

CUDA devices within the system are numbered, not always
in order of decreasing performance

by default a CUDA application uses the lowest number
device which is “visible” and available

visibility controlled by environment variable
CUDA VISIBLE DEVICES

current device can be set by using cudaSetDevice

cudaGetDeviceProperties does what it says

each stream is associated with a particular device
– current device for a kernel launch or a memory copy

see simpleMultiGPU example in SDK

see section 3.2.6 for more information Lecture 6 – p. 22

Multiple devices

If a user is running on multiple GPUs, data can go directly
between GPUs (peer – peer) – doesn’t have to go via CPU

very important when using new direct NVlink
interconnect – much faster than PCIe

cudaMemcpy can do direct copy from one GPU’s
memory to another

a kernel on one GPU can also read directly from an
array in another GPU’s memory, or write to it

this even includes the ability to do atomic operations
with remote GPU memory

for more information see Section 4.11, “Peer Device
Memory Access” in CUDA Runtime API documentation:
https://docs.nvidia.com/cuda/cuda-runtime-api/

Lecture 6 – p. 23

Multi-GPU computing

Single workstation / server:

a big enclosure for good cooling

up to 4 high-end cards in 16x PCIe v3 slots – up to
12GB/s interconnect

2 high-end CPUs

1.5kW power consumption – not one for the office

NVIDIA DGX-1 Deep Learning server

8 NVIDIA GV100 GPUs, each with 32GB HBM2

2 × 20-core Intel Xeons (E5-2698 v4 2.2 GHz)

512 GB DDR4 memory, 8TB SSD

150GB/s NVlink interconnect between the GPUs
Lecture 6 – p. 24

Multi-GPU computing

A bigger configuration:

NVIDIA DGX-2 Deep Learning server
16 NVIDIA GV100 GPUs, each with 32GB HBM2
2 × 24-core Intel Xeons (Platinum 8168)
1.5 TB DDR4 memory, 32TB SSD
NVSwitch interconnect between the GPUs

a distributed-memory cluster / supercomputer with
multiple nodes, each with

2-4 GPUs
100 Gb/s Infiniband

PCIe v3 bandwidth of 12 GB/s similar to Infiniband
bandwidth

Lecture 6 – p. 25

Multi-GPU computing
The biggest GPU systems in Top500 list (June 2018):

Summit (Oak Ridge National Lab, USA)
122 petaflop (#1), 9MW
IBM Power 9 CPUs, NVIDIA Volta GV100 GPUs

Sierra (Lawrence Livermore National Lab, USA)
76 petaflop (#3)
IBM Power 9 CPUs, NVIDIA Volta GV100 GPUs

ABCI (AIST, Japan)
19 petaflop (#5), 2MW
Intel Xeon CPUs, NVIDIA Volta V100 GPUs

Piz Daint (CSCS Switzerland)
20 petaflop (#6), 2MW
Cray XC50 with NVIDIA P100 GPUs Lecture 6 – p. 26

Multi-GPU computing

How does one use such machines?

Depends on hardware choice:

for single machines, use shared-memory multithreaded
host application

for clusters / supercomputers, use distributed-memory
MPI message-passing

Lecture 6 – p. 27

MPI approach

In the MPI approach:

one GPU per MPI process (nice and simple)

distributed-memory message passing between MPI
processes (tedious but not difficult)

scales well to very large applications

main difficulty is that the user has to partition their
problem (break it up into separate large pieces for each
process) and then explicitly manage the communication

note: should investigate GPU Direct for maximum
performance in message passing

Lecture 6 – p. 28

Multi-user support

What if different processes try to use the same device?

Depends on system compute mode setting (section 3.4):

in “default” mode, each process uses the fastest device
good when one very fast card, and one very slow
not good when you have 2 identical fast GPUs

in “exclusive” mode, each process is assigned to first
unused device; it’s an error if none are available

cudaGetDeviceProperties reports mode setting

mode can be changed by sys-admin using
nvidia-smi command line utility

Lecture 6 – p. 29

Odds and ends

Appendix B.21: loop unrolling

If you have a loop:

for (int k=0; k<4; k++) a[i] += b[i];

then nvcc will automatically unroll this to give

a[0] += b[0];
a[1] += b[1];
a[2] += b[2];
a[3] += b[3];

to avoid cost of incrementing and looping.

The pragma
#pragma unroll 5

will also force unrolling for loops without explicit limits
Lecture 6 – p. 30

Odds and ends

Appendix B.2.5: restrict keyword

void foo(const float* __restrict__ a,
const float* __restrict__ b,

float* __restrict__ c) {
c[0] = a[0] * b[0];
c[1] = a[0] * b[0];
c[2] = a[0] * b[0] * a[1];
c[3] = a[0] * a[1];
c[4] = a[0] * b[0];
c[5] = b[0];
...
}

The qualifier asserts that there is no overlap between
a,b,c , so the compiler can perform more optimisations

Lecture 6 – p. 31

Odds and ends

Appendix E.3.3.3: volatile keyword

Tells the compiler the variable may change at any time, so
not to re-use a value which may have been loaded earlier
and apparently not changed since.

This can sometimes be important when using shared
memory

Lecture 6 – p. 32

Odds and ends

Compiling:

Makefile for first few practicals uses nvcc to compile
both the host and the device code

internally it uses gcc for the host code, at least by
default
device code compiler based on open source LLVM
compiler

sometimes, prefer to use other compilers (e.g. icc,
mpicc) for main code that doesn’t have any CUDA calls

this is fine provided you use -fPIC flag for
position-independent-code (don’t know what this means
but it ensures interoperability)

can also produce libraries for use in the standard way
Lecture 6 – p. 33

Odds and ends

Prac 6 Makefile:
INC := -I$(CUDA_HOME)/include -I.
LIB := -L$(CUDA_HOME)/lib64 -lcudart
FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp
g++ -c -fPIC -o main.o main.cpp

prac6.o: prac6.cu
nvcc prac6.cu -c -o prac6.o $(INC) $(FLAGS)

prac6: main.o prac6.o
g++ -fPIC -o prac6 main.o prac6.o $(LIB)

Lecture 6 – p. 34

Odds and ends

Prac 6 Makefile to create a library:
INC := -I$(CUDA)/include -I.
LIB := -L$(CUDA)/lib64 -lcudart
FLAGS := --ptxas-options=-v --use_fast_math

main.o: main.cpp
g++ -c -fPIC -o main.o main.cpp

prac6.a: prac6.cu
nvcc prac6.cu -lib -o prac6.a $(INC) $(FLAGS)

prac6a: main.o prac6.a
g++ -fPIC -o prac6a main.o prac6.a $(LIB)

Lecture 6 – p. 35

Odds and ends

Other compiler options:

-arch=sm 35
specifies GPU architecture

-maxrregcount=n
asks compiler to generate code using at most n
registers; compiler may ignore this if it’s not possible,
but it may also increase use up to this limit

This is much less important now since threads can have
up to 255 registers

Lecture 6 – p. 36

Odds and ends

Launch bounds (B.20):

-maxrregcount modifies default for all kernels

each kernel can be individually controlled by specifying
launch bounds heuristics

__global__ void
__launch_bounds__(maxThreadsPerBlock,

minBlocksPerMultiprocessor)
MyKernel(...)

Lecture 6 – p. 37

Conclusions

This lecture has discussed a number of more advanced
topics

As a beginner, you can ignore almost all of them

As you get more experienced, you will probably want to
start using some of them to get the very best performance

Lecture 6 – p. 38

Lecture 7:
tackling a new application

Prof. Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute

Oxford e-Research Centre

Lecture 7 – p. 1

Initial planning

1) Has it been done before?

check CUDA SDK examples

check CUDA user forums

check gpucomputing.net

check with Google

Lecture 7 – p. 2

Initial planning

2) Where is the parallelism?

efficient CUDA execution needs thousands of threads

usually obvious, but if not
go back to 1)
talk to an expert – they love a challenge
go for a long walk

may need to re-consider the mathematical algorithm
being used, and instead use one which is more
naturally parallel – but this should be a last resort

Lecture 7 – p. 3

Initial planning

Sometimes you need to think about “the bigger picture”

Already considered 3D finite difference example:

lots of grid nodes so lots of inherent parallelism

even for ADI method, a grid of 1283 has 1282 tri-diagonal
solutions to be performed in parallel so OK to assign
each one to a single thread

but what if we have a 2D or even 1D problem to solve?

Lecture 7 – p. 4

Initial planning

If we only have one such problem to solve, why use a GPU?

But in practice, often have many such problems to solve:

different initial data

different model constants

This adds to the available parallelism

Lecture 7 – p. 5

Initial planning

2D:

64KB of shared memory == 16K float so grid of 642
could be held within shared memory

one kernel for entire calculation
each block handles a separate 2D problem; almost
certainly just one block per SM

for bigger 2D problems, would need to split each one
across more than one block

separate kernel for each timestep / iteration

Lecture 7 – p. 6

Initial planning

1D:

can certainly hold entire 1D problem within shared
memory of one SM

maybe best to use a separate block for each 1D
problem, and have multiple blocks executing
concurrently on each SM

but for implicit time-marching need to solve single
tri-diagonal system in parallel – how?

Lecture 7 – p. 7

Initial planning

Parallel Cyclic Reduction (PCR): starting from

an xn−1 + xn + cn xn+1 = dn, n = 0, . . . N−1

with am≡0 for m<0, m≥N , subtract an times row n−1,
and cn times row n+1 and re-normalise to get

a∗n xn−2 + xn + c∗n xn+2 = d∗n

Repeating this log2N times gives the value for xn (since
xn−N ≡0, xn+N ≡0) and each step can be done in parallel.

(Practical 7 implements it using shared memory, but if
N ≤ 32 so it fits in a single warp then on Kepler hardware
it can be implemented using shuffles.)

Lecture 7 – p. 8

Initial planning

3) Break the algorithm down into its constituent pieces

each will probably lead to its own kernels

do your pieces relate to the 7 dwarfs?

re-check literature for each piece – sometimes the
same algorithm component may appear in widely
different applications

check whether there are existing libraries which may be
helpful

Lecture 7 – p. 9

Initial planning

4) Is there a problem with warp divergence?

GPU efficiency can be completely undermined if there
are lots of divergent branches

may need to implement carefully – lecture 3 example:

processing a long list of elements where, depending on
run-time values, a few involve expensive computation:

first process list to build two sub-lists of “simple” and
“expensive” elements
then process two sub-lists separately

. . . or again seek expert help

Lecture 7 – p. 10

Initial planning

5) Is there a problem with host <–> device bandwidth?

usually best to move whole application onto GPU,
so not limited by PCIe bandwidth (12GB/s)

occasionally, OK to keep main application on the host
and just off-load compute-intensive bits

dense linear algebra is a good off-load example;
data is O(N2) but compute is O(N3) so fine if
N is large enough

Lecture 7 – p. 11

Heart modelling

Heart modelling is another interesting example:

keep PDE modelling (physiology, electrical field)
on the CPU

do computationally-intensive cellular chemistry on GPU
(naturally parallel)

minimal data interchange each timestep

Lecture 7 – p. 12

Initial planning

6) is the application compute-intensive or data-intensive?

break-even point is roughly 40 operations (FP and
integer) for each 32-bit device memory access
(assuming full cache line utilisation)

good to do a back-of-the-envelope estimate early on
before coding =⇒ changes approach to implementation

Lecture 7 – p. 13

Initial planning

If compute-intensive:

don’t worry (too much) about cache efficiency

minimise integer index operations – surprisingly costly
(this changes with Volta which has separate integer
units)

if using double precision, think whether it’s needed

If data-intensive:

ensure efficient cache use – may require extra coding

may be better to re-compute some quantities rather
than fetching them from device memory

if using double precision, think whether it’s needed

Lecture 7 – p. 14

Initial planning

Need to think about how data will be used by threads,
and therefore where it should be held:

registers (private data)

shared memory (for shared access)

device memory (for big arrays)

constant arrays (for global constants)

“local” arrays (efficiently cached)

Lecture 7 – p. 15

Initial planning

If you think you may need to use “exotic” features like
atomic locks:

look for SDK examples

write some trivial little test problems of your own

check you really understand how they work

Never use a new feature for the first time on a real problem!

Lecture 7 – p. 16

Initial planning

Read NVIDIA documentation on performance optimisation:

section 5 of CUDA Programming Guide

CUDA C Best Practices Guide

Kepler Tuning Guide

Maxwell Tuning Guide

Pascal Tuning Guide

Lecture 7 – p. 17

Programming and debugging

Many of my comments here apply to all scientific computing

Though not specific to GPU computing, they are perhaps
particularly important for GPU / parallel computing because

debugging can be hard!

Above all, you don’t want to be sitting in front of a 50,000
line code, producing lots of wrong results (very quickly!)
with no clue where to look for the problem

Lecture 7 – p. 18

Programming and debugging

plan carefully, and discuss with an expert if possible

code slowly, ideally with a colleague, to avoid mistakes
but still expect to make mistakes!

code in a modular way as far as possible, thinking how
to validate each module individually

build-in self-testing, to check that things which ought to
be true, really are true

(In my current project I have a flag OP DIAGS;
the larger the value the more self-testing the code does)

overall, should have a clear debugging strategy to
identify existence of errors, and then find the cause

includes a sequence of test cases of increasing
difficulty, testing out more and more of the code

Lecture 7 – p. 19

Programming and debugging

When working with shared memory, be careful to think
about thread synchronisation.

Very important!

Forgetting a

__syncthreads();

may produce errors which are unpredictable / rare
— the worst kind.

Also, make sure all threads reach the synchronisation point
— otherwise could get deadlock.

Reminder: can use cuda-memcheck --tool
racecheck to check for race condition Lecture 7 – p. 20

Programming and debugging

In developing laplace3d, my approach was to

first write CPU code for validation

next check/debug CUDA code with printf statements
as needed, with different grid sizes:

grid equal to 1 block with 1 warp (to check basics)
grid equal to 1 block and 2 warps (to check
synchronisation)
grid smaller than 1 block (to check correct treatment
of threads outside the grid)
grid with 2 blocks

then turn on all compiler optimisations

Lecture 7 – p. 21

Performance improvement

The size of the thread blocks can have a big effect on
performance:

often hard to predict optimal size a priori

optimal size can also vary significantly on different
hardware

optimal size for laplace3d with a 1283 grid was
128 × 2 on Fermi generation
32 × 4 on later Kepler generation

at the time, the size of the change was a surprise

we’re not talking about just 1-2% improvement,
can easily be a factor 2× by changing block size

Lecture 7 – p. 22

Performance improvement

A number of numerical libraries (e.g. FFTW, ATLAS) now
feature auto-tuning – optimal implementation parameters
are determined when the library is installed on the specific
hardware

I think this is going to be important for GPU programming:

write parameterised code

use optimisation (possibly brute force exhaustive
search) to find the optimal parameters

an Oxford student, Ben Spencer, developed a simple
flexible automated system to do this – can try it in one
of the mini-projects

Lecture 7 – p. 23

Performance improvement

Use profiling to understand the application performance:

where is the application spending most time?

how much data is being transferred?

are there lots of cache misses?

there are a number of on-chip counters can provide this
kind of information

The CUDA profiler is great

provides lots of information (a bit daunting at first)

gives hints on improving performance

Lecture 7 – p. 24

Going further

In some cases, a single GPU is not sufficient

Shared-memory option:

single system with up to 16 GPUs

single process with a separate host thread for each
GPU, or use just one thread and switch between GPUs

can also transfer data directly between GPUs

Distributed-memory option:

a cluster, with each node having 1 or 2 GPUs

MPI message-passing, with separate process for each
GPU

Lecture 7 – p. 25

Going further

Keep an eye on what is happening with new GPUs:

Pascal came out in 2016:
P100 for HPC with great double precision
16GB HBM2 memory → more memory bandwidth
NVlink → 4×20GB/s links per GPU

Volta came out in 2017/18:
V100 for HPC
32GB HBM2 memory
roughly 50% faster than P100 in compute, memory
bandwidth, and 80% faster with NVlink2
special “tensor cores” for machine learning (16-bit
multiplication + 32-bit addition for matrix-matrix
multiplication) – much faster for TensorFlow Lecture 7 – p. 26

Going further

Two GPU systems:

NVIDIA DGX-1 Deep Learning server
8 NVIDIA GV100 GPUs, each with 32GB HBM2
2 × 20-core Intel Xeons (E5-2698 v4 2.2 GHz)
512 GB DDR4 memory, 8TB SSD
150GB/s NVlink interconnect between the GPUs

NVIDIA DGX-2 Deep Learning server
16 NVIDIA GV100 GPUs, each with 32GB HBM2
2 × 24-core Intel Xeons (Platinum 8168)
1.5 TB DDR4 memory, 32TB SSD
NVSwitch interconnect between the GPUs

Lecture 7 – p. 27

JADE

Joint Academic Data science Endeavour

funded by EPSRC under national Tier 2 initiative

22 DGX-1 systems (with older Pascal P100s)

50 / 30 / 20 split in intended use between
machine learning / molecular dynamics / other

Oxford led the consortium bid, but system sited at
STFC Daresbury and run by STFC / Atos

in operation for a year now

There is also a GPU system at Cambridge.

Lecture 7 – p. 28

Going further

Intel:

latest “Skylake” CPU architectures
some chips have built-in GPU, purely for graphics
4−22 cores, each with a 256-bit AVX vector unit
one or two 512-bit AVX-512 vector units per core
on new high-end Xeons

Xeon Phi architecture
Intel’s competitor to GPUs, but now abandoned

ARM:

already designed OpenCL GPUs for smart-phones

new 64-bit Cavium Thunder-X2 has up to 54 cores,
being used in Bristol’s new “Isambard” Cray
supercomputer Lecture 7 – p. 29

Going further

My current software assessment:

CUDA is dominant in HPC, because of
ease-of-use
NVIDIA dominance of hardware, with big sales in
games/VR, machine learning, supercomputing
extensive library support
support for many different languages
(FORTRAN, Python, R, MATLAB, etc.)
extensive eco-system of tools

OpenCL is the multi-platform standard, but currently
only used for low-end mass-market applications

computer games
HD video codecs Lecture 7 – p. 30

Final words

it continues to be an exciting time for HPC

the fun will wear off, and the challenging coding will
remain – computer science objective should be to
simplify this for application developers through

libraries
domain-specific high-level languages
code transformation
better auto-vectorising compilers

confident prediction: GPUs and other accelerators /
vector units will be dominant in HPC for next 5-10 years,
so it’s worth your effort to re-design and re-implement
your algorithms

Lecture 7 – p. 31

